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Abstract. A key application of conversational search is refining a user’s search
intent by asking a series of clarification questions, aiming to improve the rel-
evance of search results. Training and evaluating such conversational systems
currently requires human participation, making it unfeasible to examine a wide
range of user behaviors. To support robust training/evaluation of such systems, we
propose a simulation framework called COSEARCHER4 that includes a parame-
terized user simulator controlling key behavioral factors like cooperativeness and
patience. Using a standard conversational query clarification benchmark, we ex-
periment with a range of user behaviors, semantic policies, and dynamic facet
generation. Our results quantify the effects of user behaviors, and identify critical
conditions required for conversational search refinement to be effective.

Keywords: conversational search · user simulation for conversational search ·
conversational query clarification

1 Introduction

As personalized information agents become ubiquitous, people increasingly expect to
engage them in information-seeking dialogues, instead of having to formulate a precise
query. A user’s query to a search system often under-specifies the search intent (or
facet of the information need, as is often referred to in the literature). A conversational
system could elicit a more precise information need from a user, by asking her a series of
clarification questions to narrow down the set of possible intents, ultimately to improve
the relevance of the search results. Recent work [7] has shown the theoretical value of
obtaining answers to such clarification questions to improve the final retrieval.

Search refinement is also critical in practice, namely for voice-based agents like
Alexa or Siri. Generally, only a small number of results can be returned to the user via
a voice modality, and matching the correct search intent is critical [31]. Furthermore, in
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applications such as e-commerce, successive search refinement is natural for narrowing
down the choice of products using facets of the target item.

Unfortunately, conversational search refinement is highly challenging due to the re-
liance on human participation for developing, training, and evaluating system variants
or parameters. Furthermore, some users may not be willing to provide additional infor-
mation to the search system after the initial request, while others might be willing to
collaborate with the system by engaging in a dialogue. To address these issues, training
and evaluating such conversational systems with a large number of users or crowd work-
ers has been the dominant strategy. This has two shortcomings: (1) High cost, especially
when different variations of a search system must be tested; (2) The pool of human par-
ticipants might not be representative of future participants, who might, for example, be
less cooperative and/or patient. A key contribution of this paper is re-examining the
underlying assumptions of conversational search, to quantify the effects of user cooper-
ativeness, i.e., willingness to provide clarification information, and user patience, i.e.,
willingness to engage in a long dialogue with a search system. We quantify this intu-
ition by developing a simple, yet powerful, stochastic user simulator COSEARCHER for
conversational search refinement, and investigate the implications of cooperativeness
and patience of users by extensive simulation experiments that would not be feasible
with human participants. This proposed simulator provides a way to better understand
the effectiveness and limitations of the a given conversational search system, for a wider
range of potential future users, without degrading their search experience.

Although our user simulator has only two parameters (cooperativeness and pa-
tience), and might thus be deemed unrealistically simple because humans have far more
“variables”, we argue that these are the characteristics directly responsible for the user
behavior observable by a search system, and thus form an acceptable proxy for scalable
evaluation of a conversational search system under a wide range of realistic configura-
tions of complex latent search behavior “variables”.

In summary, our contributions include:

– We systematically investigate the task of conversational search intent clarification,
comparing facet identification and ranking methods, for both static and dynamically
generated candidate intents.

– We present a simple yet powerful conversational search simulator, COSEARCHER,
with key parameters of cooperativeness and patience, to enable systematic and scal-
able experimentation with conversational search refinement (Section 3.4).

– Using COSEARCHER, we for the first time demonstrate using extensive simulation
experiments, that modeling cooperation and patience of the searcher is fundamental
for the success of conversational search, and identify the conditions where conver-
sational search can be effective. This required evaluating results for hundreds of
thousands parameter combinations for conversational experiments, which would
not be feasible with human participants. (Section 5).

Broadly, our work adds to the growing evidence of the importance of engaging in con-
versations with users to improve search performance, and provides the critical building
block, the COSEARCHER user simulator, for scalable evaluation of a given conversa-
tional search system under a variety of conditions. Next, we briefly review related work
to place our contributions in context.
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2 Related Work

There is a large body of work in NLP and IR that addresses conversational systems
[34,14,8,37]. Advances in NLP and IR in the last few years have also been accompanied
by a surge in research of conversational systems.

Within the sub-field, understanding user behavior is an important research direc-
tion. [31] and [21] performed user studies to understand what kind of user behavior is
useful for conversational search, but they did not explicitly model the results for use
in simulations. Additionally, [30,39] perform user simulation, but unlike our work fo-
cus solely on recommender systems and use a fixed user model. For chat systems and
task-completion dialogues, developing user simulators has also been shown to be an
effective way to reduce the required training data [11,16,24], which inspired our efforts
to adapt that general idea to search-oriented conversational systems. To the best of our
knowledge, our paper is the first to propose a user simulator for conversational search.

A parallel line of work focuses on learning to ask clarification questions to fill in
missing information [25,26,27,28,38]. None of these, however, focus on intent refine-
ment, nor do they make use of a variable user model for evaluation. Another related
direction is faceted search, where a user reacts to the proposed facets to refine the in-
formation need or to restrict or change the set of results [19,36,18,32,23,17,22,33].

Most similar to our work is that of [7], which uses human annotation of clarification
questions which are then used within an IR system to evaluate how they could help
retrieval performance. They release the resulting dataset, called Qulac, which we use
as the basis of our paper. Qulac makes use of the 198 topics, corresponding facets
and relevance judgements from the TREC09-12 diversity track [12,13], supplemented
by crowdsourced human clarification questions and answers for each facet. For each
topic, there are multiple human generated clarification questions corresponding to the
each of the topic’s facets, and for each (topic,facet,question) triple, there is an human
generated answer where the human assumes the role of a searcher looking for the facet
and answers the given question. Very recently, the Qulac dataset was expanded into
ClariQ [6] via the addition of new data, including synthetic multi-turn conversations.
Our work is evaluated using the original Qulac dataset which is sufficient to investigate
the research questions posed here. Our other, expanded facet dataset constructed from
Bing query suggestions and manual annotations, complements Qulac and allows us to
investigate additional challenges that arise with numerous query facets.

The Qulac paper [7] presents the Neural Question Selection (NeuQS) model, which
given a conversation context (a series of questions/answers), selects the next question to
ask from a candidate question database (the Qulac dataset). The human answer is then
used to simulate the end of the conversation and the whole conversation is used as input
to a query-likelihood IR system to evaluate the utility of the clarification question.

We differ from this work by focusing on intent refinement — the goal of our system
is to narrow a set of candidate intents down to a specific intent — and by creating a user
model and simulator, COSEARCHER, which allows us to evaluate the utility of clari-
fication questions not just on a specific set of human annotators, but rather a large set
of simulated parameterized users. COSEARCHER also enables the possibility of scal-
able training of conversational search systems, optimized for different types of users,
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and supporting sophisticated, yet data hungry, end-to-end deep learning approaches for
conversational search, e.g., via Reinforcement Learning [35,9].

3 Modeling Conversational Search Intent Refinement through
User Simulation

We now overview the conversational search intent refinement setting, following the
recent formulation in [7], and our simulation-based approach for investigating this topic.

3.1 Problem Setting: Conversational Search Refinement

Often, a searcher (user) provides an under-specified query to the search system, which
may reflect multiple information needs, or different facets of the same intent. A con-
versational search refinement system attempts to pinpoint the user’s search intent via a
series of clarification questions, which the Searcher can choose to answer cooperatively
(by volunteering additional information about their intent), lazily (“yes/no”) or not re-
spond to the system at all, e.g., if the Searcher ran out of time or patience. After each
turn, the search system may chose to ask additional clarification questions, or return
search results, or both. An example conversational search dialogue is shown in Fig. 3a,
for the initial under-specified query, where the system follows with a sequence of clari-
fication questions to generate the result ranking using the expanded/refined query.

Formally, we assume that the searcher has an information need (topic) t (i.e., the
initial search query), and a true information need facet or aspect ft, which the system
has to infer to properly rank the search results. We also assume that candidate facets C
for the topic t is either known (e.g., from a knowledge base if the query is an entity),
or can be dynamically generated (e.g., from query refinement logs of a search engine,
or from popular entity attributes). The goal of the search system, then, is to identify
the intended topic facet ft by asking clarification questions, and return a list of results
relevant to ft. Specifically, the search system picks the first candidate facet c ∈ C and
asks a clarification question: “Are you looking for c?”. The user can respond with either
“Yes” or “No”. If the answer is “Yes”, the agent stops, accepting c as its best guess for
the searcher’s true information need. If the answer is “No”, the agent selects the next
candidate facet c from the list of candidate facets. If the user’s “No” is informative (has
additional information which might guide refinement, such as “No, I’m looking for...”)
we add the answer to the current context to be used for re-ranking. Candidates facets are
then re-ranked, as described below, and this process repeated until either there are no
more candidate facets or the user’s patience runs out. Note that in our setup, we choose
to model neutral responses (when the proposed facet is related to intended facet but not
quite the same) as “No”, since the intended facet has not yet been identified.

3.2 Candidate Facet Ranking Strategies

We consider two facet ranking strategies: (1) Rand: a random baseline that orders facets
randomly. (2) Sim: a semantic similarity strategy, which assigns a score for every can-
didate facet by computing the mean cosine similarity between the facet and each infor-
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USER: Korean language (the topic)

BOT: Are you looking to find re-
sources on translating Korean
to other languages?

COSEARCHER: no
BOT: Ok, are you looking to find re-

sources on learning and teach-
ing Korean?

COSEARCHER: no
BOT: Ok, are you looking to find a

Korean/English bilingual dictio-
nary?

COSEARCHER: no i just want to know
a few common korean phrases

BOT: Are you looking for what are
some common Korean phrases?

COSEARCHER: YES
True intent: “What are some com-
mon Korean phrases?”

(b)
Fig. 1: (a)System overview, illustrating COSEARCHER instantiated with (topic, intent
facet), and a Facet Provider, which provides candidate facets that the search refinement
system uses to converse with the COSEARCHER to identify the intended facet; (b): An
actual simulated conversation with a partially cooperative COSEARCHER instance.

mative “No” in the conversation context, using mean bag-of-vectors as sentence em-
beddings. We use the LexVec n-gram subword vectors [29] to represent each word.

3.3 Dynamic Facet Generation

The previous state of the art approach — NeuQS [7] and similar methods — require
knowing a priori a set of candidate questions and answers for a given facet, which
is not realistic for most search topics or information needs. We now investigate how to
abstract and generalize this approach to dynamically generated a set of candidate facets
using a facet provider.

One example of such a facet provider is a search engine query suggestion mecha-
nism, e.g., the Bing search engine Autosuggest available via an API, 5 which, given an
initial query, returns a set of 8 query completions. The query topic is used the initial
query and the returned set of completions as candidate facets. We experiment with two
variants of this facet provider: (1) S-Bing, which uses a single call to Autosuggest, re-
sulting in at most 8 facets per topic and (2) the superset B-Bing, which makes makes
26 additional calls for a topic by appending to the query each letter of the alphabet,
resulting in 8 + 8 ∗ 26 = 216 candidate facets per topic. Note that this can be seen as

5https://azure.microsoft.com/en-us/services/cognitive-services/autosuggest/
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a breadth-first-search of the Autosuggest API, where nodes are expanded by this letter-
appending technique. Though we restrict ourselves to a single level, this search can go
deeper, to allow for more in-depth and comprehensive exploration of the user intent
refinement task, using a simulator described next.

3.4 COSEARCHER: User Simulator for Conversational Search

Our core contribution, COSEARCHER, is the parameterized modeling of conversation
search system users. The model is general, and is applicable to a broad set of con-
versational search tasks. It has two key components: (1) User Intent: a task-specific
representation of the user’s goals; and (2) User Parameters: values representing levels
of cooperativeness and patience;
User Intent: In our search intent refinement use case, the goal is a search intent known
only to the user, and the goal of a system is to discover this intent through a series of
questions. The simulator returns a Boolean response depending on whether the question
matches the intent.

Formally, the user model has a function g(topic, intent, question) that returns a sim-
ilarity score between the topic/intent and the question. The “Yes”/“No” is then decided
using a threshold that be chosen using downstream performance, or intrinsically evalu-
ated if there is labeled “Yes”/“No” data.
CoSearcher Behavior Parameters: COSEARCHER has two core parameters: coop-
erativeness and patience. Cooperativeness is a key user characteristic which has been
assumed by conversational systems, and represents the users willingness to help the
agent. Patience, representing the maximum number of interactions a user is willing to
have with the conversational system, is based on the observation that user willingness to
examine results diminishes over time [20]. Manipulating these two parameters via sim-
ulations enables us to expose the direct relationship between these key user behavior
factors and conversational system results.
Cooperativeness: A user of a conversational system can be more cooperative by pro-
viding extra information (an informative answer) in addition to a minimal response.
The informative answer can be task agnostic, by leaking the score from g(·) via answers
such as “No, not even close”/“No, but you’re close”, or directly leaking intent (with or
without rewording), such as “No, I’m looking for $intent”. We define Cooperativeness
as a Bernoulli random variable where p is the level of cooperativeness (i.e., a user with
cooperativeness=0 only gives boolean answers, and a user with cooperativeness=1 al-
ways gives informative answers). Task-specific informative responses can be provided
by making use of labeled data from human annotated informative answers, or by train-
ing a generative model using this data.
Patience: A user also has a patience level p, such that the conversation ends when the
conversation exceeds a predefined number of turns p. This corresponds to the maximum
amount of effort this user is willing to expand by interacting with the search system.

While in this paper we fix a user’s patience and cooperativeness parameters through-
out a conversation session, COSEARCHER can also be configured to update these values
dynamically, which can increase or decrease cooperativeness or patience of the user as
the session progresses. In this work, we explore a wide range of these values through
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simulation, thus exhaustively testing the effect of user behavior on the success of a
conversational search refinement system.

4 Experimental Setup

4.1 Resources and Evaluation

Our study uses only publicly available resources. The main dataset used is the previ-
ously described Qulac benchmark dataset [7]. Our “Yes”/“No” classifier fine-tunes the
BERT-large uncased model from [15]. The similarity rankers use the LexVec [29] n-
gram embeddings.6 The IR search system is the same query-likelihood model used by
[7]7 indexed on ClueWeb09b.

We measure the success of a dialogue by evaluating the relevance of the results
retrieved using the enhanced query with identified user intent (topic + facet), using
standard IR evaluation metrics: Mean Reciprocal Rank (MRR), Precision@k (P@k),
and normalized Discounted Cumulative Gain@k (nDCG@k).

4.2 Conversational Intent Refinement Simulations

We now describe the concrete implementation of COSEARCHER used to evaluate a
conversational search refinement system under variety of conditions. Figure 1 shows
the flow of an experiment for a given query topic and (hidden) true intent facet. For
these experiments, the user intent is represented as a combination of topic and true
intent facet, as described in Section 3.

To simulate cooperative users, we need a mechanism to provide informative answers
that incorporate feedback. We achieve this through implementing for function g(.) a
simple heuristic to allow us to use a dataset such as Qulac (described above) to train CO-
SEARCHER. Specifically, we automatically label each instance (topic, facet, question,
answer) in the Qulac dataset as follows: if answer contains “Yes”/“No” in its first three
words, label (topic, facet, question, answer, 1/0) accordingly, else ignore it.

For COSEARCHER to respond to a clarification question, we experiment with a
variety of lexical and semantic matching mechanisms to determine a match between
a question and a user’s intended topic facet. We adapt the work on Semantic Textual
Similarity (STS) for this task [5,4,2,1,3,10]. Specifically, we fine-tune the BERT-large
model [15] which achieves state of the art performance on the STS Benchmark (STS-B)
[10]. We use the same setup as used in [15] for the STS-B task, but train a binary classi-
fier rather than a regressor. The input to BERT model is “topic . intent [SEP] question”
using WordPiece tokenization, and the output is a match score - if a threshold is ex-
ceeded, COSEARCHER returns “Yes” to indicate that the correct facet was proposed,
and “No” otherwise (potentially with additional information as described above).

We split Qulac’s 198 topics into 100 training, 25 validation, and 73 test topics, using
only training and validation topics for the intent match classifier training/evaluation,
and reserving the test topics as hidden for the full conversational system evaluations.

6https://github.com/alexandres/lexvec
7Implementation distributed by authors at https://github.com/aliannejadi/qulac
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At threshold 0.5, which we use throughout this paper, the classifier achieves an 0.63 F1
score. Figure 2a shows the resulting Precision/Recall curve of our trained classifier. For
responding with informative answers, we calculate g(topic, facet, question), decide if it
is a “Yes”/“No” using the chosen threshold of .5, and randomly pick a human answer
to the same topic and facet that has the right 1/0 label. This setup allows us to test our
system with a fully configurable user. The system is run via a controller that selects the
user parameters, including topic/facet and also initializes the interaction with the agent.

5 Results and Discussion

We formulate the IR query with the topic and the first facet to which the user model
answers “Yes”, or only the topic if no “Yes” is received before user patience runs out.
We use the exact same Query-Likelihood IR model/data as in the NeuQS paper [7].8

Although submitting the entire dialogue could potentially improve search performance,
since it includes human user responses which often contain paraphrases of the search
facet, we opt to use only the system’s best guess of what the correct facet is, as it
excludes the previous (likely incorrect) facets discussed in the conversation.

We were not completely successful at adapting NeuQS to our exact problem set-
ting (explicit intent refinement), so we compare our system using the Sim facet ranker
to the results reported by [7] on the same overall IR task and dataset. We mimick the
combinatorially-generated dialogue used as input to NeuQS by setting COSEARCHER
cooperativeness to 1 and patience to 3. Results are given in Table 1. Our system us-
ing Qulac facets has a larger gap to the Topic-only baseline (+.1061) than NeuQS to
its Topic-only baseline (+.0910). Dynamic facet generation outperforms the topic-only
baseline; we see that having a large number of candidate facets is important: B-Bing
has 26x more facets than S-Bing, allowing for finer matching.

5.1 Effects of Patience and Cooperativeness

We set cooperativeness to 1 and vary the patience of the user model. Results are shown
in Fig. 2c. We note that similarity based ranking always outperforms random selection,
and retrieval improves as patience increases. Random facet selection is feasible when
the set of candidate facets is small, as is the case with Qulac and S-Bing. The perfor-
mance degrades substantially, however, for the larger B-Bing facet generator, remaining
close to the baseline topic MRR (see Table 1). In contrast, semantic similarity ranking
shows clear improvements as the conversation progresses.

We repeat these experiments, but this time vary the cooperativeness rather than pa-
tience (which is now fixed at 3). Results are shown in Fig. 2d. The Sim ranker clearly
benefits from higher cooperativeness, while Rand shows no improvement, as expected.
The considerable gap between B-Bing and S-Bing has a simple explanation: the user
intent is less likely to be present in the small S-Bing set of facets than in the B-Bing
superset, so additional cooperativeness helps one but no the other.

8Note that since they do not perform explicit intent refinement, they submit the entire dialogue
context as a query to the IR system, whereas we submit only the topic and the refined facet.
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Table 1: Performance comparison between prior state of the art methods, including [7]
(top) and COSEARCHER (bottom). “Topic-only” refers to the baseline method issuing
only the topic as the query to the search system system, ignoring any facet information
obtained through conversation.

Method MRR P@1 nDCG@1 nDCG@5 nDCG@20

Topic-only 0.2715 0.1842 0.1381 0.1451 0.1470
σ-QPP 0.3570 0.2548 0.1960 0.1938 0.1812
LambdaMART 0.3558 0.2537 0.1945 0.1940 0.1796
RankNet 0.3573 0.2562 0.1979 0.1943 0.1804
NeuQS 0.3625 0.2664 0.2064 0.2013 0.1862
Topic-only 0.2938 0.1900 0.1329 0.1456 0.1525
COSEARCHER- Qulac 0.3999 0.3025 0.2263 0.2110 0.1908
COSEARCHER- S-Bing 0.3136 0.2010 0.1415 0.1653 0.1597
COSEARCHER- B-Bing 0.3444 0.2366 0.1781 0.1769 0.1703

We next investigate the interaction between cooperativeness and patience, repeating
the same setup from the previous IR experiments but this time varying both patience and
cooperativeness. We study only B-Bing facets since these pose the hardest facet iden-
tification problem, requiring a deeper conversation to narrow down candidates. Results
shown in Fig. 2b clearly indicate that both cooperativeness and patience are required to
achieve maximal IR performance.

In sum, we showed that different COSEARCHER configurations (user config, facet
providers, etc.) led to a wide range of IR performances, demonstrating the functionality
and applicability of our framework.

6 Analysis and Discussion

6.1 Characterization of Successful Conversational Refinement

Using the conversations generated with a wide range of behavior simulator features,
we can explore what makes for a successful conversational search session. It is clear
that the topic of the query has some effect on the difficulty of the task. We attempt to
quantify this intuition through semantic analysis of the properties of search topics and
facets to gain insight into the system performance.

We observe that ambiguous entities are associated with lower success rates across all
facet providers. Examples of such entities with multiple senses include: iron (chemical
element, clothing iron, nutritional supplement), Euclid (person, multiple businesses),
Rice (food, person name, e.g., Rice university). Conversely, unambiguous entities are
associated with much higher success rates, e.g., Universal Animal Cuts (a product), or
solar panels. To quantify this we simulate 100 dialogues for each facet and measure the
ratio of successful conversations. Using a sample of 20 topics (10 ambiguous entities,
10 non-ambiguous) we observe an average success rate of 55% for the ambiguous ones,
compared to 72% for the non-ambiguous entities.
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Fig. 2: (a) Precision-Recall curve of BERT Yes/No classifier on Qulac validation set. (b,
c, d) The effect of varying patience/cooperativeness: (b) Heatmap of MRR for B-Bing
using similarity facet ranker as patience/cooperativeness vary. (c) MRR for all facet
providers using Sim and Rand facet rankers for cooperativeness=1 as patience varied.
(d) Same as (c), but fixing patience at 3 and varying cooperativeness.

Similarly, topic ambiguity is a key factor. Topics that are broad in nature, with a
large number of potential facets, yield poorer results. One such example is the topic
cass county missouri with the facet ‘What was the 2008 budget for Cass County, MO?’.
For a sample of 10 topics with ≥ 5 Qulac facets, we observe a mean success rate of
58%, against 66% for 10 topics with ≤ 3 facets. We hypothesize that it can be difficult
to refine the query to such a specific facet within a reasonable number of turns.

Finally, facets containing multiple entities and entities that are complex noun phrases
were often associated with poorer performance. For a sample of 10 topics with complex
entities, we observed an average success rate of 54%, compared to an overall average of
62%. These results indicates that entity extraction and disambiguation are key building
blocks for successful conversational systems.

6.2 Qualitative Analysis: Case Studies

We complement our analysis above by offering case studies to provide intuition on
why conversational search succeeds and fails in different situations under various user
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USER: Quit Smoking (the topic)

BOT: Are you looking for quit smoking
withdrawal symptoms?

COSEARCHER: no i am interested if it is
possible to quit smoking cold turkey

BOT: Are you looking for quit smoking
cold turkey?

COSEARCHER: yes specifically the cold
turkey method

True intent: “Can you quit smoking
using the cold turkey method?”

(a)

USER: iron (the topic)

BOT: Are you looking for iron throne?
COSEARCHER: no i want to know about

iron deficiencies
BOT: Are you looking for iron rich

foods?
COSEARCHER: no i would like informa-

tion about iron deficiencies
BOT: Are you looking for iron normal

range?
COSEARCHER: yes

True user intent: “Find info about iron
deficiencies”

(b)

Fig. 3: (a) an example of a successful conversation (cooperativeness=1, Bing facets); (b)
an example of a matching error (cooperativeness=1, Bing facets). The user incorrectly
accepts a facet that is very closely related to the true intent.

“personas” with varying degrees of cooperativeness. First, we consider an example of a
cooperative user interacting with a system using the Qulac (static) topic facets, shown
in Fig. 1b. Recall that for high value of cooperativeness, the user (and the simulator)
often volunteer information to the search system, even if the initial response or guess
was not correct, i.e., provide “informative no” responses. As a result, we observe the
search system quickly converging on the true searcher intent. Another successful exam-
ple using the Bing query suggestion facets is shown in Fig. 3a. Given the large number
of relevant facets available via the external search provider, the system is able to match
the Qulac facet within 2 turns.

The example in Figure 3a highlights the importance of realistically modeling “infor-
mative rejection” via our proposed cooperativeness parameter. In this example, a coop-
erative user volunteers her intent immediately, as soon as the system asks a clarification
question. This is a known limitation of the Qulac dataset (which is crowdsourced with
highly cooperative “users”), but may not be realistic. A more common scenario is that
a user may not be able to fully specify her intent (hence the vague original query), but
can easily recognize the topic facets she is, or is not interested in when prompted. The
COSEARCHER framework explicitly models and allows to automatically identify such
cases. Consider a failed conversation (Fig. 3b), also with a cooperative user, using the
Bing query suggestions (dynamic facets) as candidate facets. In the simulated conversa-
tion example below, the search system continues to ignore the search intent refinements
volunteered by the cooperative COSEARCHER user model, until the user simulator fi-
nally accepts the (incorrect) intent suggestion, likely resulting in non-relevant results.

We can see that in the above examples the system uses the information from the user
to identify the true intent within a few turns. These examples provide additional intu-
ition about the challenges in conversational search refinement, and illustrate the range
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of conversations and interactions that COSEARCHER can support to simulate different
types of users and search tasks.

7 Conclusions and Future Work

We investigated the effectiveness of conversational search refinement, a key task for
conversational search systems. We hypothesized that the success of conversational search
depends significantly on the users’ behavior and the search task characteristics. To ac-
complish this, we introduced a parameterized conversational search user simulator, CO-
SEARCHER, to systematically probe the boundaries of conversational search intent re-
finement. COSEARCHER was used to evaluate the effectiveness of query facet identifi-
cation algorithm under a variety of conditions corresponding to different types of users.
Our experiments on an existing benchmark (Qulac) and a new, dynamically generated
dataset of search intent facets, demonstrate the power and generality of COSEARCHER,
exhibiting a new state of the art performance.

We also systematically explored the space of conversational search refinement out-
comes for different types of search tasks and users. Specifically, we characterized the se-
mantic differences between search topics and intents which are more (or less) amenable
to conversational search refinement; We also empirically showed that (1) For the inter-
esting real-world scenario where set of facets is large and a non-random facet ranker
is used (B-Bing-Sim), cooperation on the user’s part is fundamental for the success of
conversational search refinement (in Fig. 2d, a uncooperative user’s MRR in 3-turn-
or-less dialogue is nearly identical to the .2938 topic-only baseline, improving up to
.3444 as cooperativeness increases); and as illustrated in Fig. 2b), the effort (charac-
terized by patience and cooperativeness) vs. benefit (MRR) tradeoff can be quantified:
linear regression gives MRR = .0038×patience+ .034×cooperativeness+ .29 with
R2 = 0.77. (2) A simple semantic policy is effective for identifying searcher intent: in
all experiments, it outperforms Random facet selection; in particular for B-Bing-Sim in
Fig. 2c, MRR plateauing at 4 turns indicates that the best matching facet of the 216 can-
didates facets has been identified; (3) Dynamic search intent facet generation is feasible:
MRR of .3444 for B-Bing-Sim is much higher than the topic-only baseline of .2938,
suggesting a promising direction for future extensions by considering other sources of
search intent facets.

We emphasize that the described results and analysis required simulating hundreds
of thousands of conversational search refinement experiments, enabled by the presented
COSEARCHER simulator. In the future, we plan to expand COSEARCHER to support
more sophisticated behavior dynamics, which could be conditioned on the conversation
length, search result quality, task characteristics, or other contextual factors. Addition-
ally, COSEARCHER is naturally suited for scenarios where the user intent is in natural
language, but the system represents facets as database queries (e.g., over an e-commerce
catalogue) and must select or generate these queries through dialogue.

The combination of the new state of the art results, our empirical insights, and the
newly introduced flexible COSEARCHER framework – complemented by the new dy-
namic search intent dataset to be released, provide significant progress towards more
intelligent and effective conversational search systems.
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